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Wildfire smoke impacts respiratory health
more than fine particles from other sources:
observational evidence from Southern California
Rosana Aguilera 1,3✉, Thomas Corringham 1,3, Alexander Gershunov1 & Tarik Benmarhnia1,2

Wildfires are becoming more frequent and destructive in a changing climate. Fine particulate

matter, PM2.5, in wildfire smoke adversely impacts human health. Recent toxicological studies

suggest that wildfire particulate matter may be more toxic than equal doses of ambient

PM2.5. Air quality regulations however assume that the toxicity of PM2.5 does not vary across

different sources of emission. Assessing whether PM2.5 from wildfires is more or less harmful

than PM2.5 from other sources is a pressing public health concern. Here, we isolate the

wildfire-specific PM2.5 using a series of statistical approaches and exposure definitions. We

found increases in respiratory hospitalizations ranging from 1.3 to up to 10% with a 10 μgm−3

increase in wildfire-specific PM2.5, compared to 0.67 to 1.3% associated with non-wildfire

PM2.5. Our conclusions point to the need for air quality policies to consider the variability in

PM2.5 impacts on human health according to the sources of emission.
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F ine particulate matter, i.e., particles with aerodynamic dia-
meter ≤2.5 μm (PM2.5), is the main component of wildfire
smoke1 that impacts public health2–5. PM2.5 can be inhaled

into the deepest recesses of the lungs6 and may enter the
bloodstream impairing vital organs including the lungs7. PM2.5 in
the United States has decreased in past decades due to environ-
mental regulations5,8, with the exception of wildfire-prone areas5.
Wildfire PM2.5 in the US is projected to increase with climate
change along with the associated burden on human health9.
Levels of wildfire PM2.5 can greatly exceed those of ambient
PM2.5, spiking episodically within a short period of time (e.g.,
hours after the onset of a wildfire), and such high exposure levels
may generate important health impacts. Current air quality
standards specific to PM2.5 from the Clean Air Act Amendments
do not distinguish the sources of emission or chemical compo-
sition, implicitly considering PM2.5 from wildfires and from other
sources (e.g., ports, industrial plants, and traffic emissions) to be
equally harmful to human health. This is also true in other
regions of the world, as in the WHO Air Quality Guidelines
(AQG)10 for example.

Though the differential toxicity of wildfire PM2.5 as compared
to other ambient sources of PM2.5 is not well understood11–13,
recent animal toxicological studies suggest that particulate matter
from wildfires is more toxic than equal doses from other sources
such as ambient pollution14,15. In vitro and in vivo studies have
shown that mechanisms that may explain wildfire-specific
PM higher toxicity include inflammation, oxidative stress15, or
increased respiratory infection by altering pulmonary macro-
phages activity16. Wildfire particulate matter is mostly carbo-
naceous (with 5–20% elemental carbon and at least 50% organic
carbon17,18) and has more oxidative potential than ambient urban
particulate due to the presence of more polar organic com-
pounds19. All the above compounds in wildfire smoke tend to
generate more free radicals and thus have a greater potential to
cause inflammation and oxidative stress in the lung than urban
ambient particulate from the same region20,21. It is therefore
imperative to differentiate between smoke and non-smoke PM2.5

when assessing impacts on public health.
In epidemiological studies, it has been shown that PM2.5 from

wildfire smoke can exacerbate a range of health problems
including respiratory and cardiovascular issues4,22,23 (although
some uncertainty exists23,24). Yet, to date, no study has assessed
the public health impact of wildfire-specific PM2.5 as it differs
from PM2.5 from other sources at a fine spatial resolution (e.g.,
zip code) and spanning multiple wildfires over a 14-year period.
Previous studies assessing wildfire smoke effects on health have
often been restricted to single wildfire events due to limitations in
the estimation of human exposure to wildfire-specific PM2.5,
which typically relies on computationally demanding dynamical
chemical transport models (CTMs). The most extensive study25

to date assessed the impacts of smoke exposure in the elderly
population (≥65 years) within the Western US during a 6-year
period, but was resolved at a coarser level (county) and relied in
part on CTMs for quantifying wildfire-specific PM2.5. We com-
pare four statistical approaches to isolate wildfire-specific PM2.5

from other sources. These approaches do not rely on heavy
computing efforts and offer the advantage of modeling daily, zip
code-level wildfire-specific PM2.5 over a long study period and
extensive area.

In Southern California (SoCal), the dry gusty offshore
(northeasterly) Santa Ana winds (SAW) start-up in the fall, peak
in December, and wane in the spring26. SAWs are thus episodic
reversals of the prevailing onshore (westerly) winds in SoCal.
Early season SAWs of autumn, occurring after the long dry
Mediterranean summer and before the first rains of winter,
typically drive the largest wildfires, while most ignitions are

human caused27. The Southern California traditional wildfire
season thus differs from that in most other Western US regions
due to its meteorological, climatic, and ignition causes27,28. We
note, however, that recent winter and spring SAW-driven wild-
fires and research suggest that the SoCal wildfire season may be
expanding29. We also note that SAWs are dormant in summer,
and although summer heat-driven wildfires are becoming more
prevalent lately, smoke from such fires (with the notable excep-
tion of hundreds of California wildfires burning in August 2020!)
does not typically impact the coastal zone, which is the reason
summer is excluded from this analysis. Dry gusty SAWs accel-
erate and warm on their way down coastal topography towards
sea level; they not only fan and spread wildfires burning in the
wildland–urban interface, but also transport smoke to densely
populated coastal areas. These SAW-driven wildfires can spread
faster and burn longer than fires at other times of the year30.
Furthermore, recent work has shown that PM2.5 tends to increase
with strong SAWs in the presence of wildfire burning upwind31.

In this paper, we assess the impacts on respiratory health
outcomes of PM2.5 attributable to wildfire smoke in SoCal, as
compared to PM2.5 from other sources. In this region, sources of
non-smoke PM2.5, include vehicular emissions, secondary aero-
sols (e.g., sulfate and nitrate), soil, agricultural, and industrial
emissions 32–34. In order to robustly isolate the health impacts of
wildfire-specific PM2.5, we apply and compare four analytical
approaches. Specifically, we implemented the following distinct
methods: (i) an instrumental variable approach with a two-stage
regression; (ii) a spatio-temporal multiple imputation approach,
and (iii) an interaction effect approach. Lastly, we also compared
these approaches to (iv) a seasonal interpolation method recently
proposed by Lipner et al.35.

In each of these approaches, we relied on two distinct exposure
variables yielding eight estimates of the differential impacts of
wildfire-specific PM2.5. We used (i) the occurrence of strong
SAWs and the presence of fire upwind and (ii) smoke plume
datasets (NOAA Hazard Mapping System (HMS)) within a 160
km buffer from a wildfire perimeter to identify zip code days
exposed to smoke. In addition to isolating the effect of wildfire-
specific PM2.5 from other sources on respiratory health, the
analytical methodology implemented in this study allowed us to
cover a large region, population, and study period spanning 14
years (1999–2012).

Our study comprised 696 zip code polygons within the Santa
Ana wind domain (Fig. 1). The Santa Ana wind season extends
liberally from September to May26 and therefore the summer
months of June, July, and August were excluded from our ana-
lyses. Daily-, zip code-specific concentrations of PM2.5

31 repre-
sent fine particulate matter from all sources, including ambient
levels and wildfire smoke. Daily hospital admissions for respira-
tory diseases (n= 1,655,011), which include pulmonary diagnoses
such as asthma, chronic obstructive pulmonary disease (COPD),
pneumonia, and interstitial lung disease were aggregated at the
daily level by zip code.

The highest mean PM2.5 concentrations were observed in
highly populated coastal zip codes, as well as in some inland zip
codes in San Bernardino and Riverside Counties (Fig. 2a). Mean
values for rates of respiratory admissions per 100,000 individuals
suggested pockets of higher incidence in some urban areas and
possibly heightened admissions in the Central Valley where dust
may be a factor (Fig. 2b). Total monthly regional SAW activity,
i.e., the sum of the Santa Ana Wind Regional Index (SAWRI)26

over a month within 1999–2012, reflecting both intensity and
frequency of SAW, peaked between the months of November and
January. Similarly, mean PM2.5 values were highest during late fall
and winter months, whereas peaks in respiratory admissions were
observed mainly in winter and particularly during February
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(Fig. S1 in Supplementary information). Figure 3 shows mean
values for wildfire-specific PM2.5 estimated by imputation and
seasonal interpolation, using the fire upwind and strong SAW
exposure definition. In terms of the approaches used to isolate
wildfire-specific PM2.5, when comparing the imputation and
seasonal interpolation estimates, we find that the latter might
yield larger values in some instances since the non-smoke back-
ground considers a seasonal median and thus can be lower than
the non-smoke concentration imputed daily at a given zip code
by means of the spatio-temporal imputation approach. In addi-
tion, we include case studies related to wildfire events that took
place in October 2007, the most impactful in terms of wildfire
smoke exposure and burden to public health36 (see details and
resulting figure in Supplementary information). This case studies
further illustrate that wildfire-specific PM2.5 estimates widely
agree during extreme wildfire events such as the aforementioned
2007 firestorm.

Results and discussion
Effects of wildfire-PM2.5 on respiratory admissions. Table 1
summarizes our results for the effects of wildfire-PM2.5 on
respiratory admissions in Southern California over the period
1999–2012, excluding summer months (June, July, and August),
using the occurrence of strong SAWs and the presence of fire
upwind as exposure definition. Based on the mean number (1.85) of
daily respiratory admissions per 100,000 individuals, a 10 μgm−3

increase in PM2.5 was estimated to increase the number of
admissions by only 0.76% (95% CI: 0.42–1.1). In contrast, the
causal effects of PM2.5 attributable to wildfire smoke estimated by

spatio-temporal imputation amounted to a 10.0% (95% CI:
3.5–16.5) increase in admissions, the highest percentage among all
methods and exposures used. Such results were similar, though
varying in the amplitude of % increase in admissions when using
other approaches to isolate the wildfire-specific PM2.5 (see Table 1),
as well as among all approaches considering smoke plumes within a
160 km buffer to define zip code days exposed to wildfire smoke
(see Table S1 in Supplementary information). We conclude that
wildfire-specific PM2.5 is up to 10 times more harmful on human
health than PM2.5 from other sources. All the above methods and
resulting estimates in increased admissions have, however, very
wide confidence intervals, but these estimates are consistently
higher than their aggregated or non-smoker counterparts.

Study limitations include the use of patient home address to
estimate exposures and using community-level PM2.5 to assess
and quantify individual wildfire PM2.5 exposures. The number
and extent of smoke plumes used to categorize exposed zip code
days represent a conservative estimate due to the limitations of
visible satellite data. In addition to all the above, our definition of
upwind fire exposure (detailed in “Methods”) may have also
misclassified some of the smoke PM2.5 as non-smoke PM2.5 and
vice versa. The fire upwind and strong SAW exposure definition
focuses exclusively on SAW-driven wildfires and the overall
north-easterly wind direction. The smoke plumes and buffer
exposure definition, on the other hand, may include a few small
non-SAW wildfires that occurred during the September–May
period in a given year. Smoke from such inland wildfires,
however, tends to be transported away from the coast by the
prevailing onshore winds. This is also the case with summer
wildfires. Although wildfires are burning in August 2020, at the

Fig. 1 Wildfire perimeters in Southern California (1999–2012). Wildfire perimeters shown here represent the total area burned for a given fire during our
study period comprising 1999–2012, excluding summer months (June, July, and August). The inset figure shows the location of our study region, which
includes zip codes within the Santa Ana Wind domain in Southern California, USA.
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time of this writing, Santa Ana winds are dormant in summer,
and smoke from such wildfires does not typically impact the
coastal zone. This is the reason summer was excluded from our
analysis.

Additional potential limitations involve not including any lagged
effects in our models when assessing the impact of exposure to
smoke PM2.5 on respiratory health. Lastly, we acknowledge that
wildfires can increase tropospheric ozone, which is a powerful
oxidant that can irritate the airways and can thus increase the risk
of hospitalizations for respiratory conditions37. At the same time, it
has been shown that wildfires generate increases in ozone levels
through processes distinct from PM2.5 from smoke38,39. Further-
more, a recent paper showed that PM2.5 was associated with
respiratory ED visits and hospitalizations during a wildfire period
even when adjusted for ozone40. Recent studies proposed different
methods to predict ozone exposure during wildfire events41 and
future studies should address isolating the health impacts of ozone
generated specifically by wildfires.

Implications for public health and air quality policy. Our
findings indicate that wildfire-specific PM2.5 can cause a greater
impact on respiratory health than PM2.5 from other sources. In each
approach and each combination of variables to define zip code days
exposed to wildfire plumes, we found that wildfire-specific PM2.5

were up to 10 times more harmful than non-smoke PM2.5. Wild-
fires have the potential to greatly and suddenly increase PM2.5

concentrations22,36, often surpassing safe limits (35 μgm−3) and
reaching levels qualified as hazardous (>250 μgm−3) by the Air
Quality Index (AQI, US EPA). Such sudden increase in PM2.5

caused by wildfire smoke can thus particularly affect vulnerable
populations such as children and the elderly23,36,42,43. Overall, a
greater impact of wildfire smoke PM2.5 on public health relative to
ambient levels can be expected as PM2.5 concentration tends to be
higher during wildfire episodes. However, in this study, we also
show that even for similar exposure levels, PM2.5 from wildfires is
considerably more dangerous for respiratory health. A comparable
study25 examining the elderly population in counties across the
Western US found a 7.2% increase in the risk of respiratory
admissions during smoke days with high wildfire-specific PM2.5

(>37 μg/m) compared with nonsmoker days.
Recent toxicological studies have shown differences in the

composition and effects of wildfire PM2.5 compared to ambient
sources14,15,44,45. In one study14, significant changes were
observed in macrophage and neutrophil counts in mouse lung
samples exposed to wildfire particulate matter compared to
ambient sources. Specifically, the authors observed that the
toxicity of PM in wildfire smoke to the respiratory system is 3–4

Fig. 2 Mean values of PM2.5 and rate of respiratory admissions by ZIP
code. aMean PM2.5 concentrations at available zip codes (county boundaries
shown in black) and b mean rate of respiratory admissions (per 100,000
individuals) per zip code during 1999–2012 (summer months not considered).

Fig. 3 Wildfire-specific concentrations of PM2.5. Mean wildfire-specific
PM2.5 estimated by a imputation and b seasonal interpolation methods and
using the fire upwind and strong SAW exposure definition.
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times greater than equivalent doses of ambient PM14. A
subsequent study by Wegesser et al.44. expanded on these
findings to show that substances such as polycyclic aromatic
hydrocarbons can be present in much higher concentrations in
smoke versus levels detected in ambient air. Another study45

examined the inflammatory responses due to wildfire smoke PM
exposure and found significant changes in reactive oxygen species
and subsequent oxidative stress, leading to higher cell degenera-
tion and potential programmed cell death.

In addition to differences in the chemical composition of
smoke and ambient PM, different stages of biomass combustion
appear to have differential impacts on health15. Recent findings
have suggested that the types of trees and the temperature at
which the combustion takes place may explain the differential
toxicity regarding wildfire-specific PM, as observed in mouse lung
response15. All the above evidence suggests that the assumption
that all particles of a given size class have the same toxicity (which
is currently the basis for regulation of airborne PM2.5) may be
inaccurate. Future studies should address the epidemiological
response to wildfires affecting different ecosystems and fuel types
and burning at different combustion temperatures.

Understanding the impacts of wildfire on public health is of vital
importance in Southern California where several factors may
increase exposure to wildfire-specific PM2.5 in the context of global
climate change. Wildfire severity and risk in this region will likely
intensify in the warming future46 as changing precipitation and
wind patterns gradually push the wildfire season from fall to winter
when back-to-back SAWs can cause wildfires to burn longer29,47,48.
In addition, given that most large fires in Southern California are
caused by human ignitions, whether accidental or deliberate, the
current and projected population growth trends and the expansion
of the Wildland-Urban Interface may create additional wildfire
ignitions49 in the region. Our results could be transferred to similar
regions in the US and the world where wind-driven wildfires cause
damage to public health (via smoke PM2.5) and property,
particularly in a changing world scenario where wildfire-PM2.5 is
projected to increase relative to emissions from other sources.

Methods
The following sections describe the data and methodology used to estimate wildfire-
specific PM2.5 and to quantify its impact on respiratory health. We used ArcGIS
10.550, R version 3.5.151, and Stata version 1652 for all analyses detailed below.

Respiratory health. Daily hospital admissions for respiratory diseases were
obtained from the California Office of Statewide Health Planning and Develop-
ment (OSHPD) database of patient discharge data for the study period and spatial
domain. Respiratory hospitalizations correspond to the ICD 9 codes 460:519 which
include pulmonary diagnoses, such as asthma, COPD, pneumonia, and interstitial
lung disease. In addition, data for flu diagnosis were also available. All data were
aggregated at the daily level by zip code and converted to rates of admission by
dividing the admission counts by the population.

Fine particulate matter (PM2.5). Daily-, zip code-specific concentrations of PM2.5

were estimated from 1999 through 201231 using 24-h daily means sampled and
analyzed by the US EPA Air Quality System (https://www.epa.gov/aqs) at ground
monitoring stations within a 20 km radius of each population-weighted zip code
centroid. Values were interpolated using an inverse distance weighting approach31,
which gives greater importance to monitoring stations closer to the point of
interest. These PM2.5 values, coming from monitoring station data, represent fine
particulate matter from all sources, including ambient levels and wildfire smoke.
PM2.5 values were available on 578 zip codes in our study region, subject to
monitoring station data availability, with varying degrees of missing data. Overall,
the mean percentage of missing values in these zip codes was 33% (median: 15%).

Wildfire upwind and strong Santa ana winds. Wildfire exposure was derived
using fire perimeters in Southern California from 1999 to 2012 from the Fire and
Resource Assessment Program of the California Department of Forestry and Fire
Protection (CalFire; http://frap.fire.ca.gov/). Zipcodes were assigned a wildfire
event upwind if their centroids were within a 160-km radius of the fire perimeter’s
centroid (Fig. 4) and were located within a range of angles (roughly from −10° toT
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120°) that capture the north-easterly direction and the smoke plumes associated
with Santa Ana winds. Neighboring zip codes to the fire perimeter were also
assigned a wildfire event. Wildfire conditions were defined as the days during
which a wildfire was detected upwind of a given zip code.

The combination of strong SAWs and wildfire upwind is the condition under
which smoke is expected to impact communities downwind of a wildfire. We used
the daily version of the original hourly SAWRI26, evaluated over the Santa Ana
wind domain, to identify days with strong and widespread SAWs. SAWRI,
expressed in m s−1, provides an observationally validated regional daily summary
of the dynamically downscaled SAWs. Strong Santa Ana wind conditions were
defined as any Santa Ana wind day when SAWRI was above 3.06 m s−1 (its median
value, conditional on taking a positive value).

Smoke plumes. Smoke plumes were obtained from the NOAA Hazard Mapping
System (HMS), available from September 2005 onward. The HMS product uses
visible satellite imagery and trained satellite analyst skills to estimate the spatial
extent of smoke, though it cannot discern whether a given plume is at ground
level or higher in the atmosphere53. In addition, the HMS smoke-plume extent
data has not been validated and could thus have systematic biases because dis-
crimination of smoke can vary by region, season, and weather conditions54.
However, HMS smoke plumes remain a common binary metric used to deter-
mine if smoke is present in the atmospheric column on a given day35. The HMS
smoke products are stored as polygon shapefiles representing the spatial
extent of daily smoke plumes (ftp://satepsanone.nesdis.noaa.gov/volcano/FIRE/
HMS_ARCHIVE/). A simple smoke binary variable was created by intersecting
zip code polygons with smoke polygons, which was then used as an indication of
daily exposure to wildfire PM2.5. We included the additional condition of
wildfire presence within a 160-km radius from a given zip code in order to
classify it as exposed to wildfire smoke.

Weather covariates. We collected hourly data from NOAA’s National Centers for
Environmental Information Integrated Surface Database (NCEI ISD; https://www.
ncdc.noaa.gov/isd) and calculated 24-h daily means for wind speed, temperature,
and humidity. Values were interpolated using an inverse distance weighting
approach31 and considering the daily observations from monitoring stations within
a 20 km radius of each population-weighted zip code centroid.

Estimating wildfire-specific PM2.5

Instrumental variable (IV) approach: a two-stage regression. We use a novel joint
instrument within a two-stage regression based on both wind and wildfire
occurrence. Specifically, we modeled the incidence of wildfire upwind during
strong Santa Ana winds, in order to isolate the effects of wildfire-specific PM2.5 on
respiratory admissions. Indeed, through using these joint instruments and a two-
stage least square approach, we estimate the local average treatment effect of PM2.5

on respiratory hospital admissions55. Said differently, this procedure allows us to
isolate “complier PM2.5 values” regarding the presence an upwind wildfire smoke in
a given zip code-day. In this context, monotonicity implies that the joint instru-
ments have no effect on PM2.5 levels on non-wildfire zip code-days and that all zip

code-days with upwind wildfire are affected in the same way. Furthermore, using
this approach we can assume that any effect the joint IV has on the hospital
admissions is only mediated by a “local” variation of PM2.5 for eligible zip code-
days only (exclusion restriction criteria) while having a strong correlation between
the joint IV and PM2.5 levels.

In the first stage (Eq. 1, below), PM2.5 is regressed on a binary variable combining
the presence of wildfire upwind and strong SAWs. In the second stage (Eq. 2), rates of
respiratory admissions per 100,000 individuals are regressed on the fitted values of the
explanatory variables, including wildfire PM2.5 estimated in the previous stage. For the
IV estimation to be consistent, all exogenous variables used in the second stage must
also be included in the first stage and only one exogenous variable coefficient may be
estimated in the second stage for each instrumental variable included in the first stage
regression56. The following controls were included: the daily number of flu admissions
by zip code, weather covariates: mean daily wind speed, temperature and humidity,
day-of-week effects, month-of-year effects, a linear time trend, and zip code fixed
effects. Ordinary least squares regressions were implemented with the plm R-package
for panel data57.

First stage regression

PM2:5 it ¼ γ0 þ γ1Exposure Definitionit þ γ2Fluit þ γ3Windit þ γ4Temperatureit
þ γ5Humidityit þ Zipi þWeekdayt þMontht þ τt þ uit

ð1Þ
Second stage regression

Respit ¼ β0 þ β1 dPM2:5 it þ β2Fluit þ β3Windit þ β4Temperatureit þ β5Humidityit
þ Zipi þWeekdayt þMontht þ τt þ 2it

ð2Þ
Spatio-temporal multiple imputation approach. For this approach, we used a
cubic spline interpolation to impute the PM2.5 concentrations attributable to non-
smoke sources in zip code/days identified as exposed to wildfire smoke. Cubic
splines are an extension of polynomial regression where times t are divided into k
intervals called knots. For each interval, a regression is fit with three parameters.
This method has been found to allow the inclusion of local characteristics of a
trend without prejudicing its global characteristics.

More specifically, we followed the steps below:

a. Using the exposure definition of wildfire upwind and strong SAWs (or
smoke plumes; Sections 3 and 4), we identified the zip code days exposed to
wildfire smoke in our original PM2.5 dataset.

b. We used a spline interpolation approach to impute the values of non-smoke
PM2.5 on all zip code days categorized as exposed to smoke and where PM2.5

data were originally available (i.e., we did not impute missing values in the
original dataset). Cubic spline interpolation was implemented in R by means
of the imputeTS package58. This step provided estimates of ambient PM2.5

unrelated to wildfire smoke.
c. We then subtracted all non-smoke PM2.5 values from the original daily

PM2.5 concentrations to obtain the levels of PM2.5 attributable to wildfire
smoke in zip code days previously categorized as exposed.

Fig. 4 Wildfire upwind exposure estimation. The relationship between a given zip code centroid and a fire centroid is assessed by means of geospatial
tools. Fires burning upwind are considered within the context of the north-easterly direction of Santa Ana Winds. We use the distance between centroids,
as well as the angle of the spatial relationship as shown here, to classify a zipcode day as exposed (or not).
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d. Lastly, rates of respiratory admissions are regressed on the wildfire-specific
PM2.5 concentrations (Eq. 3), including controls for the daily number of flu
admissions by zip code, day-of-week effects, month-of-year effects, a linear
time trend, and zip code fixed effects.

Respit ¼ β0 þ β1Wildfire � PM2:5 it þ β2Fluit þ β3Windit þ β4Temperatureit
þ β5Humidityit þ Zipi þWeekdayt þMontht þ τt þ 2it

ð3Þ

Interaction model. We used a zip code fixed effects Poisson regression model to
quantify the effects of wildfire-specific and non-wildfire-specific PM2.5 on
respiratory admissions. The rate of admissions was modeled as a function of the
interaction between wildfire exposure and PM2.5 and a set of control variables
comprised of the number of flu admissions, mean daily wind speed, mean daily
temperature, mean daily humidity, zip code fixed effects, dummy variables for day
of week and month of the year, a linear time trend, and log-transformed zip code-
specific population as an offset term (Eq. 4).

Respit ¼ expðlogðPopulationitÞ þ β1PM2:5it þ β2Wildfireit þ β3PM2:5it
´Wildfireit þ β4Fluit þ β5Windit þ β6Temperatureit þ β7Humidityit
þ Γ1Zipi þ Γ2Weekdayt þ Γ3Montht þ τ t þ 2itÞ

ð4Þ

Using this framework, the effect of non-wildfire PM2.5 is captured by β1, and
the effect of wildfire PM2.5 is captured by the sum of β1 and β3, which are then
transformed to obtain the marginal effects of changes in non-wildfire-specific and
wildfire-specific PM2.5. Standard errors and confidence intervals on the marginal
effects are obtained using the delta method.

Seasonal interpolation. We based this approach on the method implemented by
Lipner et al.27 to segregate wildfire smoke PM2.5 from other sources of PM2.5:

a. As in the imputation approach, we identified the zip code days exposed to
wildfire smoke in our original PM2.5 dataset.

b. Subsequently, daily non-smoke PM2.5 was provisionally estimated by means
of inverse distance weighting spatial interpolation considering PM2.5 data
from only zip code days not exposed to wildfire smoke.

c. Seasonal non-smoke PM2.5 was then calculated as the median of the non-
smoke PM2.5 estimates above, for each three-month season and grid cell.

d. These seasonal non-smoke PM2.5 concentrations were subtracted from the
original PM2.5 dataset (setting negative differences to zero) to compute
PM2.5 derived from wildfire smoke. The remaining component of daily
PM2.5 (equal to the seasonal background unless the background was higher
than the full daily PM2.5 concentration) was then defined to be the zip code-
specific, daily non-smoke PM2.5 concentration.

e. Rates of respiratory admissions are regressed on the wildfire-specific PM2.5

concentrations (Eq. 5), including controls for the daily number of flu
admissions by zip code, day-of-week effects, month-of-year effects, a linear
time trend, and zip code fixed effects.

Respit ¼ β0 þ β1Wildfire� PM2:5 it þ β2Fluit þ Zipi
þWeekdayt þMontht þ τ t þ 2it

ð5Þ

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data, with the exception of health data, that support the findings of this study are
available from the corresponding author upon reasonable request. Publicly available data
is also found here: daily mean PM2.5 concentrations at EPA monitoring sites: https://
www.epa.gov/aqs; CalFire Wildfire Perimeters: http://frap.fire.ca.gov; NOAA Hazard
Mapping System smoke plumes: ftp://satepsanone.nesdis.noaa.gov/volcano/FIRE/
HMS_ARCHIVE/; meteorological variables from NOAA’s National Centers for
Environmental Information Integrated Surface Database: https://www.ncdc.noaa.gov/isd.

Code availability
Scripts that support the findings of this study are available from the corresponding
author upon reasonable request.
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